Histone methyltransferase SETDB1 is required for prostate cancer cell proliferation, migration and invasion
نویسندگان
چکیده
SETDB1 has been established as an oncogene in a number of human carcinomas. The present study was to evaluate the expression of SETDB1 in prostate cancer (PCa) tissues and cells and to preliminarily investigate the role of SETDB1 in prostate tumorigenesis in vitro. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) were used to detect the expression of SETDB1 in PCa tissues, adjacent normal tissues, benign prostatic hyperplasia (BPH) tissues, PCa cell lines and normal prostate epithelial cells. The results suggested that SETDB1 was upregulated in human PCa tissues compared with normal tissues at the mRNA and protein levels. The role of SETDB1 in proliferation was analyzed with cell counting kit-8, colony-forming efficiency and flow cytometry assays. The results indicated that downregulation of SETDB1 by siRNA inhibited PCa cell growth, and induced G0/G1 cell cycle arrest. The PCa cell migration and invasion decreased by silcencing SETDB1 which were assessed by using in vitro scratch and transwell invasion assay respectively. Our data suggested that SETDB1 is overexpressed in human PCa. Silencing SETDB1 inhibited PCa cell proliferation, migration and invasion.
منابع مشابه
Histone Methyltransferase SETDB1 Promotes the Progression of Colorectal Cancer by Inhibiting the Expression of TP53
SETDB1 is a novel histone methyltransferase associated with the functional tri-methylation of histone H3K9. Although aberrant high expression of SETDB1 was experimentally obversed in a variety of solid tumors, its underlying mechanisms in human carcinogenesis are not well known. In this study, we investigated the expression of SETDB1 in a large cohort of colorectal cancer (CRC) samples and cell...
متن کاملH3K9 histone methyltransferase, KMT1E/SETDB1, cooperates with the SMAD2/3 pathway to suppress lung cancer metastasis.
Aberrant histone methylation is a frequent event during tumor development and progression. KMT1E (also known as SETDB1) is a histone H3K9 methyltransferase that contributes to epigenetic silencing of both oncogenes and tumor suppressor genes in cancer cells. In this report, we demonstrate that KMT1E acts as a metastasis suppressor that is strongly downregulated in highly metastatic lung cancer ...
متن کاملMolecular and Cellular Pathobiology H3K9 Histone Methyltransferase, KMT1E/SETDB1, Cooperates with the SMAD2/3 Pathway to Suppress Lung Cancer Metastasis
Aberrant histone methylation is a frequent event during tumor development and progression. KMT1E (also known as SETDB1) is a histone H3K9 methyltransferase that contributes to epigenetic silencing of both oncogenes and tumor suppressor genes in cancer cells. In this report, we demonstrate that KMT1E acts as a metastasis suppressor that is strongly downregulated in highly metastatic lung cancer ...
متن کاملSET and MYND domain containing protein 3 in cancer.
Lysine methylation plays a vital role in histone modification. Deregulations of lysine methyltransferases and demethylases have been frequently observed in human cancers. The SET and MYND domain containing protein 3 (SMYD3) is a novel histone lysine methyltransferase and it functions by regulating chromatin during the development of myocardial and skeletal muscle. It has been recently unveiled ...
متن کاملThe Evaluation of the effects of cytotoxic, anti-proliferative and anti-migrative effects of the thymoquinone on PC3 prostate cancer cell line
Background & Objective: Herbal medicine and their composition are widely used for different therapeutic purposes. Therefore, this study was designed to evaluate of the anti-proliferation and anti-migration effects of Thymoquinone (TQ), an active part of Nigella sativa, on PC3 prostate cancer cells. Materials & Methods: In this experimental study, PC3 prostate cancer cells were treated with 0, 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2014